DIRECTORATE OF DISTANCE AND CONTINUING EDUCATION

INTERNAL ASSIGNMENT FOR MAY 2025 EXAMINAITONS

M. Sc Mathematics – First Semester

Algebraic Structures

Sub-Code: SMAM11

1.) (A) Derive the class equation for finite group.

(OR)

- (B) Let G be a group of order 715. Then the sylow 13-snbgup H of G 15 in Z(G)
- 2.) (A) Let V be an n-dimensional vector space over a field F. Then, given any element $T \in A(V)$, there exists a non trivial polynomial $q(x) \in F[x]$ of degree at most n^2 , such that q(T) = 0.

(OR)

(B) Prove that there exists a subspace W of V, invariant under T, such that $V = V_1 \bigoplus W$.

DIRECTORATE OF DISTANCE AND CONTINUING EDUCATION

INTERNAL ASSIGNMENT FOR MAY 2025 EXAMINAITONS

M. Sc Mathematics – First Semester

Real Analysis - I

Sub-Code: SMAM12

1.) (A) Let f be bounded variation on [a,b] and assume that $c \in (a,b)$. Then f is of bounded variation on [a,c] and on [c,b] and we have $V_f(a,b) = V_f(a,c) + V_f(c,b)$.

(OR)

- (B) State and prove Euler's Summation Formula.
- 2.) (A) State and prove Mertens Formula.

(OR)

(B) Assume that $f_n \rightarrow f$ uniformly on S. If each f_n is continuous at a point 'c' of S, then the limit function f is also continuous at c.

DIRECTORATE OF DISTANCE AND CONTINUING EDUCATION

INTERNAL ASSIGNMENT FOR MAY 2025 EXAMINAITONS

M. Sc Mathematics – First Semester

Ordinary Differential Equations

Sub-Code: SMAM13

1.) (A) Find the solution Φ of the initial value problem y'' + y = 0, y(0) = 0, y'(0) = 1, y''(0) = 0.

(OR)

- (B) Verify that the function $\Phi_1(x) = x$ satisfies the equation . $x^2y'' - 3x^2y'' + 6xy' - 6y = 0$, for x > 0. Find the second solution Φ_2 . Also show that $\{\Phi_1, \Phi_2\}$ form a basis for the solution for x > 0.
- 2.) (A) Find two linearly independent power series solutions (in powers of x) of the equation y'' xy' + y = 0.

(OR)

- (B) (i) Solve (6x-4y+1)dy = (3x-2y+1)dx.
 - (ii) Solve cosxcosydx-2sinxsinydy=0.

DIRECTORATE OF DISTANCE AND CONTINUING EDUCATION

INTERNAL ASSIGNMENT FOR MAY 2025 EXAMINAITONS

M. Sc Mathematics – First Semester

Graph Theory and Applications

Sub-Code: SMAE11

1.) (A) An edge e is a cut edge of a connected graph G if and only if there exists vertices u and v such that e belongs to every (u,v) path.

(OR)

- **(B)** If G is a graph with v-1 vertices, prove that the following are equivalent.
 - (a) G is connected.
 - (b) G is acyclic.
 - (c) G is a tree.
- 2.) (A) State and Prove Cayley's recursive formula.

(OR)

(B) State and Prove Tutte's perfect Matching Theorem.

DIRECTORATE OF DISTANCE AND CONTINUING EDUCATION

INTERNAL ASSIGNMENT FOR MAY 2025 EXAMINAITONS

M. Sc Mathematics – First Semester

Fuzzy Sets and their Applications

Sub-Code: SMAE12

1.) (A) State and Prove Decomposition theorem.

(OR)

- (B) If $\underline{\mathbf{R}}$ is transitive and refelexive (that is, is a preoder), then $\mathbb{R}^{k}_{\sim} = \mathbb{R}_{\sim}$, $k=1,2,3,\ldots$
- 2.) (A) State and Prove theorem of decomposition for a similitude relation.

(OR)

(B) State and Prove decomposition theorem for a fuzzy perfect order relation.